Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mining Feature Relationships in Data (2102.01355v1)

Published 2 Feb 2021 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: When faced with a new dataset, most practitioners begin by performing exploratory data analysis to discover interesting patterns and characteristics within data. Techniques such as association rule mining are commonly applied to uncover relationships between features (attributes) of the data. However, association rules are primarily designed for use on binary or categorical data, due to their use of rule-based machine learning. A large proportion of real-world data is continuous in nature, and discretisation of such data leads to inaccurate and less informative association rules. In this paper, we propose an alternative approach called feature relationship mining (FRM), which uses a genetic programming approach to automatically discover symbolic relationships between continuous or categorical features in data. To the best of our knowledge, our proposed approach is the first such symbolic approach with the goal of explicitly discovering relationships between features. Empirical testing on a variety of real-world datasets shows the proposed method is able to find high-quality, simple feature relationships which can be easily interpreted and which provide clear and non-trivial insight into data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)