Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Why is FPGA-GPU Heterogeneity the Best Option for Embedded Deep Neural Networks? (2102.01343v1)

Published 2 Feb 2021 in cs.AR

Abstract: Graphics Processing Units (GPUs) are currently the dominating programmable architecture for Deep Learning (DL) accelerators. The adoption of Field Programmable Gate Arrays (FPGAs) in DL accelerators is however getting momentum. In this paper, we demonstrate that Direct Hardware Mapping (DHM) of a Convolutional Neural Network (CNN) on an embedded FPGA substantially outperforms a GPU implementation in terms of energy efficiency and execution time. However, DHM is highly resource intensive and cannot fully substitute the GPU when implementing a state-of-the-art CNN. We thus propose a hybrid FPGA-GPU DL acceleration method and demonstrate that heterogeneous acceleration outperforms GPU acceleration even including communication overheads. Experimental results are conducted on a heterogeneous multi-platform setup embedding an Nvidia(R) Jetson TX2 CPU-GPU board and an Intel(R) Cyclone10GX FPGA board. The SqueezeNet, MobileNetv2, and ShuffleNetv2 mobile-oriented CNNs are experimented. We show that heterogeneous FPG-AGPU acceleration outperforms GPU acceleration for classification inference task over MobileNetv2 (12%-30% energy reduction, 4% to 26% latency reduction), SqueezeNet (21%-28% energy reduction, same latency), and ShuffleNetv2 (25% energy reduction, 21% latency reduction).

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.