Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Self-Teaching Machines to Read and Comprehend with Large-Scale Multi-Subject Question-Answering Data (2102.01226v2)

Published 1 Feb 2021 in cs.CL

Abstract: In spite of much recent research in the area, it is still unclear whether subject-area question-answering data is useful for machine reading comprehension (MRC) tasks. In this paper, we investigate this question. We collect a large-scale multi-subject multiple-choice question-answering dataset, ExamQA, and use incomplete and noisy snippets returned by a web search engine as the relevant context for each question-answering instance to convert it into a weakly-labeled MRC instance. We then propose a self-teaching paradigm to better use the generated weakly-labeled MRC instances to improve a target MRC task. Experimental results show that we can obtain +5.1% in accuracy on a multiple-choice MRC dataset, C3, and +3.8% in exact match on an extractive MRC dataset, CMRC 2018 over state-of-the-art MRC baselines, demonstrating the effectiveness of our framework and the usefulness of large-scale subject-area question-answering data for different types of machine reading comprehension tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.