Papers
Topics
Authors
Recent
2000 character limit reached

Role Coloring Bipartite Graphs (2102.01124v2)

Published 1 Feb 2021 in cs.DS

Abstract: A k-role coloring of a graph G is an assignment of k colors to the vertices of G such that if any two vertices are assigned the same color, then their neighborhood are assigned the same set of colors. By definition, every graph on n vertices admits an n-role coloring. While for every graph on n vertices, it is trivial to decide if it admits a 1-role coloring, determining whether a graph admits a k-role coloring is a notoriously hard problem for k greater than 1. In fact, it is known that k-Role coloring is NP-complete for k greater than 1 on arbitrary graphs. There has been extensive research on the complexity of k-role coloring on various hereditary graph classes. Furthering this direction of research, we show that k-Role coloring is NP-complete on bipartite graphs for k greater than 2 (while it is trivial for k = 2). We complement the hardness result by characterizing 3-role colorable bipartite chain graphs, leading to a polynomial-time algorithm for 3-Role coloring for this class of graphs. We further show that 2-Role coloring is NP-complete for graphs that are d vertices or edges away from the class of bipartite graphs, even when d = 1.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.