Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Numerical Weather Forecasting using Convolutional-LSTM with Attention and Context Matcher Mechanisms (2102.00696v2)

Published 1 Feb 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Numerical weather forecasting using high-resolution physical models often requires extensive computational resources on supercomputers, which diminishes their wide usage in most real-life applications. As a remedy, applying deep learning methods has revealed innovative solutions within this field. To this end, we introduce a novel deep learning architecture for forecasting high-resolution spatio-temporal weather data. Our approach extends the conventional encoder-decoder structure by integrating Convolutional Long-short Term Memory and Convolutional Neural Networks. In addition, we incorporate attention and context matcher mechanisms into the model architecture. Our Weather Model achieves significant performance improvements compared to baseline deep learning models, including ConvLSTM, TrajGRU, and U-Net. Our experimental evaluation involves high-scale, real-world benchmark numerical weather datasets, namely the ERA5 hourly dataset on pressure levels and WeatherBench. Our results demonstrate substantial improvements in identifying spatial and temporal correlations with attention matrices focusing on distinct parts of the input series to model atmospheric circulations. We also compare our model with high-resolution physical models using the benchmark metrics and show that our Weather Model is accurate and easy to interpret.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (4)
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube