Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DPIVE: A Regionalized Location Obfuscation Scheme with Personalized Privacy Levels (2102.00654v5)

Published 1 Feb 2021 in cs.CR and cs.DB

Abstract: The popularity of cyber-physical systems is fueling the rapid growth of location-based services. This poses the risk of location privacy disclosure. Effective privacy preservation is foremost for various mobile applications. Recently, geo-indistinguishability and expected inference error are proposed for limiting location leakages. In this paper, we argue that personalization means regionalization for geo-indistinguishability, and we propose a regionalized location obfuscation mechanism called DPIVE with personalized utility sensitivities. This substantially corrects the differential and distortion privacy problem of PIVE framework proposed by Yu et al. on NDSS 2017. We develop DPIVE with two phases. In Phase I, we determine disjoint sets by partitioning all possible positions such that different locations in the same set share the Protection Location Set (PLS). In Phase II, we construct a probability distribution matrix in which the rows corresponding to the same PLS have their own sensitivity of utility (PLS diameter). Moreover, by designing QK-means algorithm for more search space in 2-D space, we improve DPIVE with refined location partition and present fine-grained personalization, enabling each location to have its own privacy level endowed with a customized privacy budget. Experiments with two public datasets demonstrate that our mechanisms have the superior performance, typically on skewed locations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube