Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural OCR Post-Hoc Correction of Historical Corpora (2102.00583v1)

Published 1 Feb 2021 in cs.CL

Abstract: Optical character recognition (OCR) is crucial for a deeper access to historical collections. OCR needs to account for orthographic variations, typefaces, or language evolution (i.e., new letters, word spellings), as the main source of character, word, or word segmentation transcription errors. For digital corpora of historical prints, the errors are further exacerbated due to low scan quality and lack of language standardization. For the task of OCR post-hoc correction, we propose a neural approach based on a combination of recurrent (RNN) and deep convolutional network (ConvNet) to correct OCR transcription errors. At character level we flexibly capture errors, and decode the corrected output based on a novel attention mechanism. Accounting for the input and output similarity, we propose a new loss function that rewards the model's correcting behavior. Evaluation on a historical book corpus in German language shows that our models are robust in capturing diverse OCR transcription errors and reduce the word error rate of 32.3% by more than 89%.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.