Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Introduction of a novel word embedding approach based on technology labels extracted from patent data (2102.00425v1)

Published 31 Jan 2021 in cs.CL

Abstract: Diversity in patent language is growing and makes finding synonyms for conducting patent searches more and more challenging. In addition to that, most approaches for dealing with diverse patent language are based on manual search and human intuition. In this paper, a word embedding approach using statistical analysis of human labeled data to produce accurate and language independent word vectors for technical terms is introduced. This paper focuses on the explanation of the idea behind the statistical analysis and shows first qualitative results. The resulting algorithm is a development of the former EQMania UG (eqmania.com) and can be tested under eqalice.com until April 2021.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube