Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Introduction of a novel word embedding approach based on technology labels extracted from patent data (2102.00425v1)

Published 31 Jan 2021 in cs.CL

Abstract: Diversity in patent language is growing and makes finding synonyms for conducting patent searches more and more challenging. In addition to that, most approaches for dealing with diverse patent language are based on manual search and human intuition. In this paper, a word embedding approach using statistical analysis of human labeled data to produce accurate and language independent word vectors for technical terms is introduced. This paper focuses on the explanation of the idea behind the statistical analysis and shows first qualitative results. The resulting algorithm is a development of the former EQMania UG (eqmania.com) and can be tested under eqalice.com until April 2021.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.