Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Contextualized Rewriting for Text Summarization (2102.00385v2)

Published 31 Jan 2021 in cs.CL

Abstract: Extractive summarization suffers from irrelevance, redundancy and incoherence. Existing work shows that abstractive rewriting for extractive summaries can improve the conciseness and readability. These rewriting systems consider extracted summaries as the only input, which is relatively focused but can lose important background knowledge. In this paper, we investigate contextualized rewriting, which ingests the entire original document. We formalize contextualized rewriting as a seq2seq problem with group alignments, introducing group tag as a solution to model the alignments, identifying extracted summaries through content-based addressing. Results show that our approach significantly outperforms non-contextualized rewriting systems without requiring reinforcement learning, achieving strong improvements on ROUGE scores upon multiple extractive summarizers.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.