Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel (2102.00363v1)

Published 31 Jan 2021 in math.NA and cs.NA

Abstract: In this paper, we study a parallel-in-time (PinT) algorithm for all-at-once system from a non-local evolutionary equation with weakly singular kernel where the temporal term involves a non-local convolution with a weakly singular kernel and the spatial term is the usual Laplacian operator with variable coefficients. We propose to use a two-sided preconditioning technique for the all-at-once discretization of the equation. Our preconditioner is constructed by replacing the variable diffusion coefficients with a constant coefficient to obtain a constant-coefficient all-at-once matrix. We split a square root of the constant Laplacian operator out of the constant-coefficient all-at-once matrix as a right preconditioner and take the remaining part as a left preconditioner, which constitutes our two-sided preconditioning. Exploiting the diagonalizability of the constant-Laplacian matrix and the triangular Toeplitz structure of the temporal discretization matrix, we obtain efficient representations of inverses of the right and the left preconditioners, because of which the iterative solution can be fast updated in a PinT manner. Theoretically, the condition number of the two-sided preconditioned matrix is proven to be uniformly bounded by a constant independent of the matrix size. To the best of our knowledge, for the non-local evolutionary equation with variable coefficients, this is the first attempt to develop a PinT preconditioning technique that has fast and exact implementation and that the corresponding preconditioned system has a uniformly bounded condition number. Numerical results are reported to confirm the efficiency of the proposed two-sided preconditioning technique.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube