Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Recurrent Submodular Welfare and Matroid Blocking Bandits (2102.00321v3)

Published 30 Jan 2021 in cs.LG and cs.DS

Abstract: A recent line of research focuses on the study of the stochastic multi-armed bandits problem (MAB), in the case where temporal correlations of specific structure are imposed between the player's actions and the reward distributions of the arms (Kleinberg and Immorlica [FOCS18], Basu et al. [NeurIPS19]). As opposed to the standard MAB setting, where the optimal solution in hindsight can be trivially characterized, these correlations lead to (sub-)optimal solutions that exhibit interesting dynamical patterns -- a phenomenon that yields new challenges both from an algorithmic as well as a learning perspective. In this work, we extend the above direction to a combinatorial bandit setting and study a variant of stochastic MAB, where arms are subject to matroid constraints and each arm becomes unavailable (blocked) for a fixed number of rounds after each play. A natural common generalization of the state-of-the-art for blocking bandits, and that for matroid bandits, yields a $(1-\frac{1}{e})$-approximation for partition matroids, yet it only guarantees a $\frac{1}{2}$-approximation for general matroids. In this paper we develop new algorithmic ideas that allow us to obtain a polynomial-time $(1 - \frac{1}{e})$-approximation algorithm (asymptotically and in expectation) for any matroid, and thus to control the $(1-\frac{1}{e})$-approximate regret. A key ingredient is the technique of correlated (interleaved) scheduling. Along the way, we discover an interesting connection to a variant of Submodular Welfare Maximization, for which we provide (asymptotically) matching upper and lower approximability bounds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.