Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fairness through Social Welfare Optimization (2102.00311v4)

Published 30 Jan 2021 in cs.AI and math.OC

Abstract: We propose social welfare optimization as a general paradigm for formalizing fairness in AI systems. We argue that optimization models allow formulation of a wide range of fairness criteria as social welfare functions, while enabling AI to take advantage of highly advanced solution technology. Rather than attempting to reduce bias between selected groups, one can achieve equity across all groups by incorporating fairness into the social welfare function. This also allows a fuller accounting of the welfare of the individuals involved. We show how to integrate social welfare optimization with both rule-based AI and machine learning, using either an in-processing or a post-processing approach. We present empirical results from a case study as a preliminary examination of the validity and potential of these integration strategies.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.