Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ICodeNet -- A Hierarchical Neural Network Approach for Source Code Author Identification (2102.00230v1)

Published 30 Jan 2021 in cs.LG, cs.CV, cs.IR, and cs.PL

Abstract: With the open-source revolution, source codes are now more easily accessible than ever. This has, however, made it easier for malicious users and institutions to copy the code without giving regards to the license, or credit to the original author. Therefore, source code author identification is a critical task with paramount importance. In this paper, we propose ICodeNet - a hierarchical neural network that can be used for source code file-level tasks. The ICodeNet processes source code in image format and is employed for the task of per file author identification. The ICodeNet consists of an ImageNet trained VGG encoder followed by a shallow neural network. The shallow network is based either on CNN or LSTM. Different variations of models are evaluated on a source code author classification dataset. We have also compared our image-based hierarchical neural network model with simple image-based CNN architecture and text-based CNN and LSTM models to highlight its novelty and efficiency.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.