Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Poincaré-Bendixson Limit Sets in Multi-Agent Learning (2102.00053v2)

Published 29 Jan 2021 in cs.GT and cs.MA

Abstract: A key challenge of evolutionary game theory and multi-agent learning is to characterize the limit behavior of game dynamics. Whereas convergence is often a property of learning algorithms in games satisfying a particular reward structure (e.g., zero-sum games), even basic learning models, such as the replicator dynamics, are not guaranteed to converge for general payoffs. Worse yet, chaotic behavior is possible even in rather simple games, such as variants of the Rock-Paper-Scissors game. Although chaotic behavior in learning dynamics can be precluded by the celebrated Poincar\'e-Bendixson theorem, it is only applicable to low-dimensional settings. Are there other characteristics of a game that can force regularity in the limit sets of learning? We show that behavior consistent with the Poincar\'e-Bendixson theorem (limit cycles, but no chaotic attractor) can follow purely from the topological structure of the interaction graph, even for high-dimensional settings with an arbitrary number of players and arbitrary payoff matrices. We prove our result for a wide class of follow-the-regularized leader (FoReL) dynamics, which generalize replicator dynamics, for binary games characterized interaction graphs where the payoffs of each player are only affected by one other player (i.e., interaction graphs of indegree one). Since chaos occurs already in games with only two players and three strategies, this class of non-chaotic games may be considered maximal. Moreover, we provide simple conditions under which such behavior translates into efficiency guarantees, implying that FoReL learning achieves time-averaged sum of payoffs at least as good as that of a Nash equilibrium, thereby connecting the topology of the dynamics to social-welfare analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube