Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency (2101.12727v3)

Published 29 Jan 2021 in cs.CV and cs.LG

Abstract: Most modern unsupervised domain adaptation (UDA) approaches are rooted in domain alignment, i.e., learning to align source and target features to learn a target domain classifier using source labels. In semi-supervised domain adaptation (SSDA), when the learner can access few target domain labels, prior approaches have followed UDA theory to use domain alignment for learning. We show that the case of SSDA is different and a good target classifier can be learned without needing alignment. We use self-supervised pretraining (via rotation prediction) and consistency regularization to achieve well separated target clusters, aiding in learning a low error target classifier. With our Pretraining and Consistency (PAC) approach, we achieve state of the art target accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets. PAC, while using simple techniques, performs remarkably well on large and challenging SSDA benchmarks like DomainNet and Visda-17, often outperforming recent state of the art by sizeable margins. Code for our experiments can be found at https://github.com/venkatesh-saligrama/PAC

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.