On $f$-divergences between Cauchy distributions (2101.12459v6)
Abstract: We prove that the $f$-divergences between univariate Cauchy distributions are all symmetric, and can be expressed as strictly increasing scalar functions of the symmetric chi-squared divergence. We report the corresponding scalar functions for the total variation distance, the Kullback-Leibler divergence, the squared Hellinger divergence, and the Jensen-Shannon divergence among others. Next, we give conditions to expand the $f$-divergences as converging infinite series of higher-order power chi divergences, and illustrate the criterion for converging Taylor series expressing the $f$-divergences between Cauchy distributions. We then show that the symmetric property of $f$-divergences holds for multivariate location-scale families with prescribed matrix scales provided that the standard density is even which includes the cases of the multivariate normal and Cauchy families. However, the $f$-divergences between multivariate Cauchy densities with different scale matrices are shown asymmetric. Finally, we present several metrizations of $f$-divergences between univariate Cauchy distributions and further report geometric embedding properties of the Kullback-Leibler divergence.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.