Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On $f$-divergences between Cauchy distributions (2101.12459v6)

Published 29 Jan 2021 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We prove that the $f$-divergences between univariate Cauchy distributions are all symmetric, and can be expressed as strictly increasing scalar functions of the symmetric chi-squared divergence. We report the corresponding scalar functions for the total variation distance, the Kullback-Leibler divergence, the squared Hellinger divergence, and the Jensen-Shannon divergence among others. Next, we give conditions to expand the $f$-divergences as converging infinite series of higher-order power chi divergences, and illustrate the criterion for converging Taylor series expressing the $f$-divergences between Cauchy distributions. We then show that the symmetric property of $f$-divergences holds for multivariate location-scale families with prescribed matrix scales provided that the standard density is even which includes the cases of the multivariate normal and Cauchy families. However, the $f$-divergences between multivariate Cauchy densities with different scale matrices are shown asymmetric. Finally, we present several metrizations of $f$-divergences between univariate Cauchy distributions and further report geometric embedding properties of the Kullback-Leibler divergence.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com