Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-level Nyström--Schur preconditioner for sparse symmetric positive definite matrices (2101.12164v3)

Published 28 Jan 2021 in math.NA and cs.NA

Abstract: Randomized methods are becoming increasingly popular in numerical linear algebra. However, few attempts have been made to use them in developing preconditioners. Our interest lies in solving large-scale sparse symmetric positive definite linear systems of equations where the system matrix is preordered to doubly bordered block diagonal form (for example, using a nested dissection ordering). We investigate the use of randomized methods to construct high quality preconditioners. In particular, we propose a new and efficient approach that employs Nystr\"om's method for computing low rank approximations to develop robust algebraic two-level preconditioners. Construction of the new preconditioners involves iteratively solving a smaller but denser symmetric positive definite Schur complement system with multiple right-hand sides. Numerical experiments on problems coming from a range of application areas demonstrate that this inner system can be solved cheaply using block conjugate gradients and that using a large convergence tolerance to limit the cost does not adversely affect the quality of the resulting Nystr\"om--Schur two-level preconditioner.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hussam Al Daas (13 papers)
  2. Tyrone Rees (3 papers)
  3. Jennifer Scott (11 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.