Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Prefix-free quantum Kolmogorov complexity (2101.11686v1)

Published 27 Jan 2021 in quant-ph and cs.LO

Abstract: We introduce quantum-K ($QK$), a measure of the descriptive complexity of density matrices using classical prefix-free Turing machines and show that the initial segments of weak Solovay random and quantum Schnorr random states are incompressible in the sense of $QK$. Many properties enjoyed by prefix-free Kolmogorov complexity ($K$) have analogous versions for $QK$; notably a counting condition. Several connections between Solovay randomness and $K$, including the Chaitin type characterization of Solovay randomness, carry over to those between weak Solovay randomness and $QK$. We work towards a Levin-Schnorr type characterization of weak Solovay randomness in terms of $QK$. Schnorr randomness has a Levin-Schnorr characterization using $K_C$; a version of $K$ using a computable measure machine, $C$. We similarly define $QK_C$, a version of $QK$. Quantum Schnorr randomness is shown to have a Levin-Schnorr and a Chaitin type characterization using $QK_C$. The latter implies a Chaitin type characterization of classical Schnorr randomness using $K_C$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)