Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Magnetic Resonance Spectroscopy Deep Learning Denoising Using Few In Vivo Data (2101.11442v4)

Published 26 Jan 2021 in physics.med-ph, cs.LG, and eess.IV

Abstract: Magnetic Resonance Spectroscopy (MRS) is a noninvasive tool to reveal metabolic information. One challenge of 1H-MRS is the low Signal-Noise Ratio (SNR). To improve the SNR, a typical approach is to perform Signal Averaging (SA) with M repeated samples. The data acquisition time, however, is increased by M times accordingly, and a complete clinical MRS scan takes approximately 10 minutes at a common setting M=128. Recently, deep learning has been introduced to improve the SNR but most of them use the simulated data as the training set. This may hinder the MRS applications since some potential differences, such as acquisition system imperfections, and physiological and psychologic conditions may exist between the simulated and in vivo data. Here, we proposed a new scheme that purely used the repeated samples of realistic data. A deep learning model, Refusion Long Short-Term Memory (ReLSTM), was designed to learn the mapping from the low SNR time-domain data (24 SA) to the high SNR one (128 SA). Experiments on the in vivo brain spectra of 7 healthy subjects, 2 brain tumor patients and 1 cerebral infarction patient showed that only using 20% repeated samples, the denoised spectra by ReLSTM could provide comparable estimated concentrations of metabolites to 128 SA. Compared with the state-of-the-art low-rank denoising method, the ReLSTM achieved the lower relative error and the Cram\'er-Rao lower bounds in quantifying some important biomarkers. In summary, ReLSTM can perform high-fidelity denoising of the spectra under fast acquisition (24 SA), which would be valuable to MRS clinical studies.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.