Papers
Topics
Authors
Recent
2000 character limit reached

Recent Trends in Named Entity Recognition (NER) (2101.11420v1)

Published 25 Jan 2021 in cs.CL

Abstract: The availability of large amounts of computer-readable textual data and hardware that can process the data has shifted the focus of knowledge projects towards deep learning architecture. Natural Language Processing, particularly the task of Named Entity Recognition is no exception. The bulk of the learning methods that have produced state-of-the-art results have changed the deep learning model, the training method used, the training data itself or the encoding of the output of the NER system. In this paper, we review significant learning methods that have been employed for NER in the recent past and how they came about from the linear learning methods of the past. We also cover the progress of related tasks that are upstream or downstream to NER, e.g., sequence tagging, entity linking, etc., wherever the processes in question have also improved NER results.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.