An Empirical Study of Cross-Lingual Transferability in Generative Dialogue State Tracker (2101.11360v1)
Abstract: There has been a rapid development in data-driven task-oriented dialogue systems with the benefit of large-scale datasets. However, the progress of dialogue systems in low-resource languages lags far behind due to the lack of high-quality data. To advance the cross-lingual technology in building dialog systems, DSTC9 introduces the task of cross-lingual dialog state tracking, where we test the DST module in a low-resource language given the rich-resource training dataset. This paper studies the transferability of a cross-lingual generative dialogue state tracking system using a multilingual pre-trained seq2seq model. We experiment under different settings, including joint-training or pre-training on cross-lingual and cross-ontology datasets. We also find out the low cross-lingual transferability of our approaches and provides investigation and discussion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.