Papers
Topics
Authors
Recent
2000 character limit reached

Edge-Labeling based Directed Gated Graph Network for Few-shot Learning (2101.11299v1)

Published 27 Jan 2021 in cs.CV

Abstract: Existing graph-network-based few-shot learning methods obtain similarity between nodes through a convolution neural network (CNN). However, the CNN is designed for image data with spatial information rather than vector form node feature. In this paper, we proposed an edge-labeling-based directed gated graph network (DGGN) for few-shot learning, which utilizes gated recurrent units to implicitly update the similarity between nodes. DGGN is composed of a gated node aggregation module and an improved gated recurrent unit (GRU) based edge update module. Specifically, the node update module adopts a gate mechanism using activation of edge feature, making a learnable node aggregation process. Besides, improved GRU cells are employed in the edge update procedure to compute the similarity between nodes. Further, this mechanism is beneficial to gradient backpropagation through the GRU sequence across layers. Experiment results conducted on two benchmark datasets show that our DGGN achieves a comparable performance to the-state-of-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube