Papers
Topics
Authors
Recent
2000 character limit reached

ASBSO: An Improved Brain Storm Optimization With Flexible Search Length and Memory-Based Selection (2101.11275v2)

Published 27 Jan 2021 in cs.NE

Abstract: Brain storm optimization (BSO) is a newly proposed population-based optimization algorithm, which uses a logarithmic sigmoid transfer function to adjust its search range during the convergent process. However, this adjustment only varies with the current iteration number and lacks of flexibility and variety which makes a poor search effciency and robustness of BSO. To alleviate this problem, an adaptive step length structure together with a success memory selection strategy is proposed to be incorporated into BSO. This proposed method, adaptive step length based on memory selection BSO, namely ASBSO, applies multiple step lengths to modify the generation process of new solutions, thus supplying a flexible search according to corresponding problems and convergent periods. The novel memory mechanism, which is capable of evaluating and storing the degree of improvements of solutions, is used to determine the selection possibility of step lengths. A set of 57 benchmark functions are used to test ASBSO's search ability, and four real-world problems are adopted to show its application value. All these test results indicate the remarkable improvement in solution quality, scalability, and robustness of ASBSO.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.