Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Oracles for Point-to-Set Principles (2101.11152v2)

Published 27 Jan 2021 in cs.CC

Abstract: The point-to-set principle \cite{LutLut17} characterizes the Hausdorff dimension of a subset $E\subseteq\Rn$ by the \textit{effective} (or algorithmic) dimension of its individual points. This characterization has been used to prove several results in classical, i.e., without any computability requirements, analysis. Recent work has shown that algorithmic techniques can be fruitfully applied to Marstrand's projection theorem, a fundamental result in fractal geometry. In this paper, we introduce an extension of point-to-set principle - the notion of \textit{optimal oracles} for subsets $E\subseteq\Rn$. One of the primary motivations of this definition is that, if $E$ has optimal oracles, then the conclusion of Marstrand's projection theorem holds for $E$. We show that every analytic set has optimal oracles. We also prove that if the Hausdorff and packing dimensions of $E$ agree, then $E$ has optimal oracles. Moreover, we show that the existence of sufficiently nice outer measures on $E$ implies the existence of optimal Hausdorff oracles. In particular, the existence of exact gauge functions for a set $E$ is sufficient for the existence of optimal Hausdorff oracles, and is therefore sufficient for Marstrand's theorem. Thus, the existence of optimal oracles extends the currently known sufficient conditions for Marstrand's theorem to hold. Under certain assumptions, every set has optimal oracles. However, assuming the axiom of choice and the continuum hypothesis, we construct sets which do not have optimal oracles. This construction naturally leads to a generalization of Davies theorem on projections.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube