Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Named Entity Recognition in the Style of Object Detection (2101.11122v1)

Published 26 Jan 2021 in cs.CL

Abstract: In this work, we propose a two-stage method for named entity recognition (NER), especially for nested NER. We borrowed the idea from the two-stage Object Detection in computer vision and the way how they construct the loss function. First, a region proposal network generates region candidates and then a second-stage model discriminates and classifies the entity and makes the final prediction. We also designed a special loss function for the second-stage training that predicts the entityness and entity type at the same time. The model is built on top of pretrained BERT encoders, and we tried both BERT base and BERT large models. For experiments, we first applied it to flat NER tasks such as CoNLL2003 and OntoNotes 5.0 and got comparable results with traditional NER models using sequence labeling methodology. We then tested the model on the nested named entity recognition task ACE2005 and Genia, and got F1 score of 85.6$\%$ and 76.8$\%$ respectively. In terms of the second-stage training, we found that adding extra randomly selected regions plays an important role in improving the precision. We also did error profiling to better evaluate the performance of the model in different circumstances for potential improvements in the future.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)