Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Differential Privacy for Industrial Internet of Things: Opportunities, Applications and Challenges (2101.10569v3)

Published 26 Jan 2021 in cs.CR

Abstract: The development of Internet of Things (IoT) brings new changes to various fields. Particularly, industrial Internet of Things (IIoT) is promoting a new round of industrial revolution. With more applications of IIoT, privacy protection issues are emerging. Specially, some common algorithms in IIoT technology such as deep models strongly rely on data collection, which leads to the risk of privacy disclosure. Recently, differential privacy has been used to protect user-terminal privacy in IIoT, so it is necessary to make in-depth research on this topic. In this paper, we conduct a comprehensive survey on the opportunities, applications and challenges of differential privacy in IIoT. We firstly review related papers on IIoT and privacy protection, respectively. Then we focus on the metrics of industrial data privacy, and analyze the contradiction between data utilization for deep models and individual privacy protection. Several valuable problems are summarized and new research ideas are put forward. In conclusion, this survey is dedicated to complete comprehensive summary and lay foundation for the follow-up researches on industrial differential privacy.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.