Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On $-1$-differential uniformity of ternary APN power functions (2101.10543v1)

Published 26 Jan 2021 in cs.IT and math.IT

Abstract: Very recently, a new concept called multiplicative differential and the corresponding $c$-differential uniformity were introduced by Ellingsen et al. A function $F(x)$ over finite field $\mathrm{GF}(pn)$ to itself is called $c$-differential uniformity $\delta$, or equivalent, $F(x)$ is differentially $(c,\delta)$ uniform, when the maximum number of solutions $x\in\mathrm{GF}(pn)$ of $F(x+a)-F(cx)=b$, $a,b,c\in\mathrm{GF}(pn)$, $c\neq1$ if $a=0$, is equal to $\delta$. The objective of this paper is to study the $-1$-differential uniformity of ternary APN power functions $F(x)=xd$ over $\mathrm{GF}(3n)$. We obtain ternary power functions with low $-1$-differential uniformity, and some of them are almost perfect $-1$-nonlinear.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.