Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Superiorities of Deep Extreme Learning Machines against Convolutional Neural Networks (2101.10265v1)

Published 21 Jan 2021 in cs.LG and cs.AI

Abstract: Deep Learning (DL) is a machine learning procedure for artificial intelligence that analyzes the input data in detail by increasing neuron sizes and number of the hidden layers. DL has a popularity with the common improvements on the graphical processing unit capabilities. Increasing number of the neuron sizes at each layer and hidden layers is directly related to the computation time and training speed of the classifier models. The classification parameters including neuron weights, output weights, and biases need to be optimized for obtaining an optimum model. Most of the popular DL algorithms require long training times for optimization of the parameters with feature learning progresses and back-propagated training procedures. Reducing the training time and providing a real-time decision system are the basic focus points of the novel approaches. Deep Extreme Learning machines (Deep ELM) classifier model is one of the fastest and effective way to meet fast classification problems. In this study, Deep ELM model, its superiorities and weaknesses are discussed, the problems that are more suitable for the classifiers against Convolutional neural network based DL algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.