Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On maximum-likelihood estimation in the all-or-nothing regime (2101.09994v1)

Published 25 Jan 2021 in cs.IT, cs.AI, cs.LG, and math.IT

Abstract: We study the problem of estimating a rank-1 additive deformation of a Gaussian tensor according to the \emph{maximum-likelihood estimator} (MLE). The analysis is carried out in the sparse setting, where the underlying signal has a support that scales sublinearly with the total number of dimensions. We show that for Bernoulli distributed signals, the MLE undergoes an \emph{all-or-nothing} (AoN) phase transition, already established for the minimum mean-square-error estimator (MMSE) in the same problem. The result follows from two main technical points: (i) the connection established between the MLE and the MMSE, using the first and second-moment methods in the constrained signal space, (ii) a recovery regime for the MMSE stricter than the simple error vanishing characterization given in the standard AoN, that is here proved as a general result.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.