Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks (2101.09833v1)

Published 25 Jan 2021 in physics.flu-dyn, cs.LG, and physics.comp-ph

Abstract: In this work, physics-informed neural networks are applied to incompressible two-phase flow problems. We investigate the forward problem, where the governing equations are solved from initial and boundary conditions, as well as the inverse problem, where continuous velocity and pressure fields are inferred from scattered-time data on the interface position. We employ a volume of fluid approach, i.e. the auxiliary variable here is the volume fraction of the fluids within each phase. For the forward problem, we solve the two-phase Couette and Poiseuille flow. For the inverse problem, three classical test cases for two-phase modeling are investigated: (i) drop in a shear flow, (ii) oscillating drop and (iii) rising bubble. Data of the interface position over time is generated by numerical simulation. An effective way to distribute spatial training points to fit the interface, i.e. the volume fraction field, and the residual points is proposed. Furthermore, we show that appropriate weighting of losses associated with the residual of the partial differential equations is crucial for successful training. The benefit of using adaptive activation functions is evaluated for both the forward and inverse problem.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.