Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short-term daily precipitation forecasting with seasonally-integrated autoencoder (2101.09509v1)

Published 23 Jan 2021 in cs.LG

Abstract: Short-term precipitation forecasting is essential for planning of human activities in multiple scales, ranging from individuals' planning, urban management to flood prevention. Yet the short-term atmospheric dynamics are highly nonlinear that it cannot be easily captured with classical time series models. On the other hand, deep learning models are good at learning nonlinear interactions, but they are not designed to deal with the seasonality in time series. In this study, we aim to develop a forecasting model that can both handle the nonlinearities and detect the seasonality hidden within the daily precipitation data. To this end, we propose a seasonally-integrated autoencoder (SSAE) consisting of two long short-term memory (LSTM) autoencoders: one for learning short-term dynamics, and the other for learning the seasonality in the time series. Our experimental results show that not only does the SSAE outperform various time series models regardless of the climate type, but it also has low output variance compared to other deep learning models. The results also show that the seasonal component of the SSAE helped improve the correlation between the forecast and the actual values from 4% at horizon 1 to 37% at horizon 3.

Citations (18)

Summary

We haven't generated a summary for this paper yet.