Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Local Linear Rate of Consensus on the Stiefel Manifold (2101.09346v1)

Published 22 Jan 2021 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: We study the convergence properties of Riemannian gradient method for solving the consensus problem (for an undirected connected graph) over the Stiefel manifold. The Stiefel manifold is a non-convex set and the standard notion of averaging in the Euclidean space does not work for this problem. We propose Distributed Riemannian Consensus on Stiefel Manifold (DRCS) and prove that it enjoys a local linear convergence rate to global consensus. More importantly, this local rate asymptotically scales with the second largest singular value of the communication matrix, which is on par with the well-known rate in the Euclidean space. To the best of our knowledge, this is the first work showing the equality of the two rates. The main technical challenges include (i) developing a Riemannian restricted secant inequality for convergence analysis, and (ii) to identify the conditions (e.g., suitable step-size and initialization) under which the algorithm always stays in the local region.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.