Representation of Context-Specific Causal Models with Observational and Interventional Data (2101.09271v4)
Abstract: We address the problem of representing context-specific causal models based on both observational and experimental data collected under general (e.g. hard or soft) interventions by introducing a new family of context-specific conditional independence models called CStrees. This family is defined via a novel factorization criterion that allows for a generalization of the factorization property defining general interventional DAG models. We derive a graphical characterization of model equivalence for observational CStrees that extends the Verma and Pearl criterion for DAGs. This characterization is then extended to CStree models under general, context-specific interventions. To obtain these results, we formalize a notion of context-specific intervention that can be incorporated into concise graphical representations of CStree models. We relate CStrees to other context-specific models, showing that the families of DAGs, CStrees, labeled DAGs and staged trees form a strict chain of inclusions. We end with an application of interventional CStree models to a real data set, revealing the context-specific nature of the data dependence structure and the soft, interventional perturbations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.