Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Representation of Context-Specific Causal Models with Observational and Interventional Data (2101.09271v4)

Published 22 Jan 2021 in math.ST, math.CO, stat.ME, stat.ML, and stat.TH

Abstract: We address the problem of representing context-specific causal models based on both observational and experimental data collected under general (e.g. hard or soft) interventions by introducing a new family of context-specific conditional independence models called CStrees. This family is defined via a novel factorization criterion that allows for a generalization of the factorization property defining general interventional DAG models. We derive a graphical characterization of model equivalence for observational CStrees that extends the Verma and Pearl criterion for DAGs. This characterization is then extended to CStree models under general, context-specific interventions. To obtain these results, we formalize a notion of context-specific intervention that can be incorporated into concise graphical representations of CStree models. We relate CStrees to other context-specific models, showing that the families of DAGs, CStrees, labeled DAGs and staged trees form a strict chain of inclusions. We end with an application of interventional CStree models to a real data set, revealing the context-specific nature of the data dependence structure and the soft, interventional perturbations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com