Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Closer Look at Temporal Sentence Grounding in Videos: Dataset and Metric (2101.09028v3)

Published 22 Jan 2021 in cs.CV

Abstract: Temporal Sentence Grounding in Videos (TSGV), i.e., grounding a natural language sentence which indicates complex human activities in a long and untrimmed video sequence, has received unprecedented attentions over the last few years. Although each newly proposed method plausibly can achieve better performance than previous ones, current TSGV models still tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Even more incredibly, several extremely simple baselines without training can also achieve state-of-the-art performance. In this paper, we take a closer look at the existing evaluation protocols for TSGV, and find that both the prevailing dataset splits and evaluation metrics are the devils to cause unreliable benchmarking. To this end, we propose to re-organize two widely-used TSGV benchmarks (ActivityNet Captions and Charades-STA). Specifically, we deliberately make the ground-truth moment distribution different in the training and test splits, i.e., out-of-distribution (OOD) testing. Meanwhile, we introduce a new evaluation metric dR@n,IoU@m to calibrate the basic IoU scores by penalizing on the bias-influenced moment predictions and alleviate the inflating evaluations caused by the dataset annotation biases such as overlong ground-truth moments. Under our new evaluation protocol, we conduct extensive experiments and ablation studies on eight state-of-the-art TSGV methods. All the results demonstrate that the re-organized dataset splits and new metric can better monitor the progress in TSGV. Our reorganized datsets are available at https://github.com/yytzsy/grounding_changing_distribution.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.