Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Sobolev Training for Physics Informed Neural Networks (2101.08932v2)

Published 22 Jan 2021 in math.NA and cs.NA

Abstract: Physics Informed Neural Networks (PINNs) is a promising application of deep learning. The smooth architecture of a fully connected neural network is appropriate for finding the solutions of PDEs; the corresponding loss function can also be intuitively designed and guarantees the convergence for various kinds of PDEs. However, the rate of convergence has been considered as a weakness of this approach. This paper proposes Sobolev-PINNs, a novel loss function for the training of PINNs, making the training substantially efficient. Inspired by the recent studies that incorporate derivative information for the training of neural networks, we develop a loss function that guides a neural network to reduce the error in the corresponding Sobolev space. Surprisingly, a simple modification of the loss function can make the training process similar to \textit{Sobolev Training} although PINNs is not a fully supervised learning task. We provide several theoretical justifications that the proposed loss functions upper bound the error in the corresponding Sobolev spaces for the viscous Burgers equation and the kinetic Fokker--Planck equation. We also present several simulation results, which show that compared with the traditional $L2$ loss function, the proposed loss function guides the neural network to a significantly faster convergence. Moreover, we provide the empirical evidence that shows that the proposed loss function, together with the iterative sampling techniques, performs better in solving high dimensional PDEs.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.