Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Snapshot Hyperspectral Imaging Based on Weighted High-order Singular Value Regularization (2101.08923v1)

Published 22 Jan 2021 in eess.IV and cs.CV

Abstract: Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI) with a single 2D measurement and has attracted increasing attention recently. Recovering the underlying HSI from the compressive measurement is an ill-posed problem and exploiting the image prior is essential for solving this ill-posed problem. However, existing reconstruction methods always start from modeling image prior with the 1D vector or 2D matrix and cannot fully exploit the structurally spectral-spatial nature in 3D HSI, thus leading to a poor fidelity. In this paper, we propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging. We first build high-order tensors by exploiting the spatial-spectral correlation in HSI. Then, we propose a weight high-order singular value regularization (WHOSVR) based low-rank tensor recovery model to characterize the structure prior of HSI. By integrating the structure prior in WHOSVR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented on two representative systems demonstrate that our method outperforms state-of-the-art methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.