Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Implicit shock tracking for unsteady flows by the method of lines (2101.08913v3)

Published 22 Jan 2021 in math.NA and cs.NA

Abstract: A recently developed high-order implicit shock tracking (HOIST) framework for resolving discontinuous solutions of inviscid, steady conservation laws [41, 43] is extended to the unsteady case. Central to the framework is an optimization problem which simultaneously computes a discontinuity-aligned mesh and the corresponding high-order approximation to the flow, which provides nonlinear stabilization and a high-order approximation to the solution. This work extends the implicit shock tracking framework to the case of unsteady conservation laws using a method of lines discretization via a diagonally implicit Runge-Kutta method by "solving a steady problem at each timestep". We formulate and solve an optimization problem that produces a feature-aligned mesh and solution at each Runge-Kutta stage of each timestep, and advance this solution in time by standard Runge-Kutta update formulas. A Rankine-Hugoniot based prediction of the shock location together with a high-order, untangling mesh smoothing procedure provides a high-quality initial guess for the optimization problem at each time, which results in rapid convergence of the sequential quadratic programing (SQP) optimization solver. This method is shown to deliver highly accurate solutions on coarse, high-order discretizations without nonlinear stabilization and recover the design accuracy of the Runge-Kutta scheme. We demonstrate this framework on a series of inviscid, unsteady conservation laws in both one- and two- dimensions. We also verify that our method is able to recover the design order of accuracy of our time integrator in the presence of a strong discontinuity.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.