Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meshless Fragile Points Methods Based on Petrov-Galerkin Weak-Forms for Transient Heat Conduction Problems in Complex Anisotropic Nonhomogeneous Media (2101.08897v1)

Published 22 Jan 2021 in math.NA, cs.CE, cs.NA, and physics.comp-ph

Abstract: Three kinds of Fragile Points Methods based on Petrov-Galerkin weak-forms (PG-FPMs) are proposed for analyzing heat conduction problems in nonhomogeneous anisotropic media. This is a follow-up of the previous study on the original FPM based on a symmetric Galerkin weak-form. The trial function is piecewise-continuous, written as local Taylor expansions at the Fragile Points. A modified Radial Basis Function-based Differential Quadrature (RBF-DQ) method is employed for establishing the local approximation. The Dirac delta function, Heaviside step function, and the local fundamental solution of the governing equation are alternatively used as test functions. Vanishing or pure contour integral formulation in subdomains or on local boundaries can be obtained. Extensive numerical examples in 2D and 3D are provided as validations. The collocation method (PG-FPM-1) is superior in transient analysis with arbitrary point distribution and domain partition. The finite volume method (PG-FPM-2) shows the best efficiency, saving 25% to 50% computational time comparing with the Galerkin FPM. The singular solution method (PG-FPM-3) is highly efficient in steady-state analysis. The anisotropy and nonhomogeneity give rise to no difficulties in all the methods. The proposed PG-FPM approaches represent an improvement to the original Galerkin FPM, as well as to other meshless methods in earlier literature.

Citations (9)

Summary

We haven't generated a summary for this paper yet.