Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Crossbreeding in Random Forest (2101.08585v1)

Published 21 Jan 2021 in cs.LG and cs.AI

Abstract: Ensemble learning methods are designed to benefit from multiple learning algorithms for better predictive performance. The tradeoff of this improved performance is slower speed and larger size of ensemble learning systems compared to single learning systems. In this paper, we present a novel approach to deal with this problem in Random Forest (RF) as one of the most powerful ensemble methods. The method is based on crossbreeding of the best tree branches to increase the performance of RF in space and speed while keeping the performance in the classification measures. The proposed approach has been tested on a group of synthetic and real datasets and compared to the standard RF approach. Several evaluations have been conducted to determine the effects of the Crossbred RF (CRF) on the accuracy and the number of trees in a forest. The results show better performance of CRF compared to RF.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.