Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems (2101.08472v2)

Published 21 Jan 2021 in math.NA and cs.NA

Abstract: The nonconforming virtual element method (NCVEM) for the approximation of the weak solution to a general linear second-order non-selfadjoint indefinite elliptic PDE in a polygonal domain is analyzed under reduced elliptic regularity. The main tool in the a priori error analysis is the connection between the nonconforming virtual element space and the Sobolev space $H1_0(\Omega)$ by a right-inverse $J$ of the interpolation operator $I_h$. The stability of the discrete solution allows for the proof of existence of a unique discrete solution, of a discrete inf-sup estimate and, consequently, for optimal error estimates in the $H1$ and $L2$ norms. The explicit residual-based a posteriori error estimate for the NCVEM is reliable and efficient up to the stabilization and oscillation terms. Numerical experiments on different types of polygonal meshes illustrate the robustness of an error estimator and support the improved convergence rate of an adaptive mesh-refinement in comparison to the uniform mesh-refinement.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.