Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation (2101.08106v2)

Published 20 Jan 2021 in cs.CL

Abstract: Despite pre-trained LLMs such as BERT have achieved appealing performance in a wide range of natural language processing tasks, they are computationally expensive to be deployed in real-time applications. A typical method is to adopt knowledge distillation to compress these large pre-trained models (teacher models) to small student models. However, for a target domain with scarce training data, the teacher can hardly pass useful knowledge to the student, which yields performance degradation for the student models. To tackle this problem, we propose a method to learn to augment for data-scarce domain BERT knowledge distillation, by learning a cross-domain manipulation scheme that automatically augments the target with the help of resource-rich source domains. Specifically, the proposed method generates samples acquired from a stationary distribution near the target data and adopts a reinforced selector to automatically refine the augmentation strategy according to the performance of the student. Extensive experiments demonstrate that the proposed method significantly outperforms state-of-the-art baselines on four different tasks, and for the data-scarce domains, the compressed student models even perform better than the original large teacher model, with much fewer parameters (only ${\sim}13.3\%$) when only a few labeled examples available.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.