Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Similarity Measure of Gaussian Process Predictive Distributions (2101.08061v1)

Published 20 Jan 2021 in cs.LG and stat.ML

Abstract: Some scenarios require the computation of a predictive distribution of a new value evaluated on an objective function conditioned on previous observations. We are interested on using a model that makes valid assumptions on the objective function whose values we are trying to predict. Some of these assumptions may be smoothness or stationarity. Gaussian process (GPs) are probabilistic models that can be interpreted as flexible distributions over functions. They encode the assumptions through covariance functions, making hypotheses about new data through a predictive distribution by being fitted to old observations. We can face the case where several GPs are used to model different objective functions. GPs are non-parametric models whose complexity is cubic on the number of observations. A measure that represents how similar is one GP predictive distribution with respect to another would be useful to stop using one GP when they are modelling functions of the same input space. We are really inferring that two objective functions are correlated, so one GP is enough to model both of them by performing a transformation of the prediction of the other function in case of inverse correlation. We show empirical evidence in a set of synthetic and benchmark experiments that GPs predictive distributions can be compared and that one of them is enough to predict two correlated functions in the same input space. This similarity metric could be extremely useful used to discard objectives in Bayesian many-objective optimization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.