Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NEMR: Network Embedding on Metric of Relation (2101.08020v1)

Published 20 Jan 2021 in cs.SI and cs.AI

Abstract: Network embedding maps the nodes of a given network into a low-dimensional space such that the semantic similarities among the nodes can be effectively inferred. Most existing approaches use inner-product of node embedding to measure the similarity between nodes leading to the fact that they lack the capacity to capture complex relationships among nodes. Besides, they take the path in the network just as structural auxiliary information when inferring node embeddings, while paths in the network are formed with rich user informations which are semantically relevant and cannot be ignored. In this paper, We propose a novel method called Network Embedding on the Metric of Relation, abbreviated as NEMR, which can learn the embeddings of nodes in a relational metric space efficiently. First, our NEMR models the relationships among nodes in a metric space with deep learning methods including variational inference that maps the relationship of nodes to a gaussian distribution so as to capture the uncertainties. Secondly, our NEMR considers not only the equivalence of multiple-paths but also the natural order of a single-path when inferring embeddings of nodes, which makes NEMR can capture the multiple relationships among nodes since multiple paths contain rich user information, e.g., age, hobby and profession. Experimental results on several public datasets show that the NEMR outperforms the state-of-the-art methods on relevant inference tasks including link prediction and node classification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.