Papers
Topics
Authors
Recent
2000 character limit reached

Cross-domain few-shot learning with unlabelled data (2101.07899v1)

Published 19 Jan 2021 in cs.CV and cs.LG

Abstract: Few shot learning aims to solve the data scarcity problem. If there is a domain shift between the test set and the training set, their performance will decrease a lot. This setting is called Cross-domain few-shot learning. However, this is very challenging because the target domain is unseen during training. Thus we propose a new setting some unlabelled data from the target domain is provided, which can bridge the gap between the source domain and the target domain. A benchmark for this setting is constructed using DomainNet \cite{peng2018oment}. We come up with a self-supervised learning method to fully utilize the knowledge in the labeled training set and the unlabelled set. Extensive experiments show that our methods outperforms several baseline methods by a large margin. We also carefully design an episodic training pipeline which yields a significant performance boost.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.