Solving Quadratic Unconstrained Binary Optimization with divide-and-conquer and quantum algorithms (2101.07813v1)
Abstract: Quadratic Unconstrained Binary Optimization (QUBO) is a broad class of optimization problems with many practical applications. To solve its hard instances in an exact way, known classical algorithms require exponential time and several approximate methods have been devised to reduce such cost. With the growing maturity of quantum computing, quantum algorithms have been proposed to speed up the solution by using either quantum annealers or universal quantum computers. Here we apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems whose solutions can be assembled to form a single Polynomial Binary Unconstrained Optimization instance with fewer variables. This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach. When quantum heuristics like the Quantum Approximate Optimization Algorithm (QAOA) are used, our proposal leads to a double advantage: a substantial reduction of quantum resources, specifically an average of ~42% fewer qubits to solve MaxCut on random 3-regular graphs, together with an improvement in the quality of the approximate solutions reached.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.