Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Characterizing and Measuring the Similarity of Neural Networks with Persistent Homology (2101.07752v3)

Published 19 Jan 2021 in cs.LG and math.AT

Abstract: Characterizing the structural properties of neural networks is crucial yet poorly understood, and there are no well-established similarity measures between networks. In this work, we observe that neural networks can be represented as abstract simplicial complex and analyzed using their topological 'fingerprints' via Persistent Homology (PH). We then describe a PH-based representation proposed for characterizing and measuring similarity of neural networks. We empirically show the effectiveness of this representation as a descriptor of different architectures in several datasets. This approach based on Topological Data Analysis is a step towards better understanding neural networks and serves as a useful similarity measure.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.