Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Edge-Featured Graph Attention Network (2101.07671v1)

Published 19 Jan 2021 in cs.LG and cs.AI

Abstract: Lots of neural network architectures have been proposed to deal with learning tasks on graph-structured data. However, most of these models concentrate on only node features during the learning process. The edge features, which usually play a similarly important role as the nodes, are often ignored or simplified by these models. In this paper, we present edge-featured graph attention networks, namely EGATs, to extend the use of graph neural networks to those tasks learning on graphs with both node and edge features. These models can be regarded as extensions of graph attention networks (GATs). By reforming the model structure and the learning process, the new models can accept node and edge features as inputs, incorporate the edge information into feature representations, and iterate both node and edge features in a parallel but mutual way. The results demonstrate that our work is highly competitive against other node classification approaches, and can be well applied in edge-featured graph learning tasks.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.