Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

JigsawGAN: Auxiliary Learning for Solving Jigsaw Puzzles with Generative Adversarial Networks (2101.07555v3)

Published 19 Jan 2021 in cs.CV

Abstract: The paper proposes a solution based on Generative Adversarial Network (GAN) for solving jigsaw puzzles. The problem assumes that an image is divided into equal square pieces, and asks to recover the image according to information provided by the pieces. Conventional jigsaw puzzle solvers often determine the relationships based on the boundaries of pieces, which ignore the important semantic information. In this paper, we propose JigsawGAN, a GAN-based auxiliary learning method for solving jigsaw puzzles with unpaired images (with no prior knowledge of the initial images). We design a multi-task pipeline that includes, (1) a classification branch to classify jigsaw permutations, and (2) a GAN branch to recover features to images in correct orders. The classification branch is constrained by the pseudo-labels generated according to the shuffled pieces. The GAN branch concentrates on the image semantic information, where the generator produces the natural images to fool the discriminator, while the discriminator distinguishes whether a given image belongs to the synthesized or the real target domain. These two branches are connected by a flow-based warp module that is applied to warp features to correct the order according to the classification results. The proposed method can solve jigsaw puzzles more efficiently by utilizing both semantic information and boundary information simultaneously. Qualitative and quantitative comparisons against several representative jigsaw puzzle solvers demonstrate the superiority of our method.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.