Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

PICA: A Pixel Correlation-based Attentional Black-box Adversarial Attack (2101.07538v1)

Published 19 Jan 2021 in cs.CV

Abstract: The studies on black-box adversarial attacks have become increasingly prevalent due to the intractable acquisition of the structural knowledge of deep neural networks (DNNs). However, the performance of emerging attacks is negatively impacted when fooling DNNs tailored for high-resolution images. One of the explanations is that these methods usually focus on attacking the entire image, regardless of its spatial semantic information, and thereby encounter the notorious curse of dimensionality. To this end, we propose a pixel correlation-based attentional black-box adversarial attack, termed as PICA. Firstly, we take only one of every two neighboring pixels in the salient region as the target by leveraging the attentional mechanism and pixel correlation of images, such that the dimension of the black-box attack reduces. After that, a general multiobjective evolutionary algorithm is employed to traverse the reduced pixels and generate perturbations that are imperceptible by the human vision. Extensive experimental results have verified the effectiveness of the proposed PICA on the ImageNet dataset. More importantly, PICA is computationally more efficient to generate high-resolution adversarial examples compared with the existing black-box attacks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.