Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unsupervised Deep Learning for Handwritten Page Segmentation (2101.07487v1)

Published 19 Jan 2021 in cs.CV

Abstract: Segmenting handwritten document images into regions with homogeneous patterns is an important pre-processing step for many document images analysis tasks. Hand-labeling data to train a deep learning model for layout analysis requires significant human effort. In this paper, we present an unsupervised deep learning method for page segmentation, which revokes the need for annotated images. A siamese neural network is trained to differentiate between patches using their measurable properties such as number of foreground pixels, and average component height and width. The network is trained that spatially nearby patches are similar. The network's learned features are used for page segmentation, where patches are classified as main and side text based on the extracted features. We tested the method on a dataset of handwritten document images with quite complex layouts. Our experiments show that the proposed unsupervised method is as effective as typical supervised methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.